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Abstract. By comparing the free energies of the random phase approxk&ion and 
of the exact expansion to order 111 ,  we find a cmssover between a low-temperature 
spin-wave =-e and a bigh-temperatwe non-linear regime in the magnetic state 
of a Heisenberg ferromagnet. Above the mossover, the many-body interactions be- 
tween the spin kuduations become important and the kjnanatie constreints must be 
maintained. This crossover is revealed hy a quantum pe& in the fluctuation specific 
heat. Experiments have obaerved a peak in the spec& heat C/T very dose to our 
predicted crassover temperature. 

It is well-known [I] that at low temperatures, the excitations of a Heisenberg ferromag- 
net can be described as spin waves. The spin-wave approximation has been remarkably 
successful in predicting the thermodynamic and dynamic properties of a ferromagnet 
at low temperatures. At  sufficiently high temperatures, however, the spin fluctuations 
become non-linear and the spin-wave description breaks down. In this paper, we cal- 
culate the crossover temperature between the low-temperature spin-wave regime 
and the high-temperature non-linear regime. The crossover temperature is given by 

O.ZzJs, where J is the exchange constant, z is the n u d e r  of nearest neighbours 
in the lattice, and s is the spin. Because the fluctuation specific heat peaks at 'f, the 
crossover can be easily observed. Since the Curie temperature T,, scales like zJs2 ,  the 
non-linear regime between 'l= and T, grows as the spin increases. 

The breakdown of the spin-wave approximation should be expected for at least 
three reasons. First, the spin kinematics [2,3] limits the number of spin deviations 
per site to 2s. Because it does not restrict the number of spin deviations, the spin- 
wave theory violates the kinematic contraints when the density of spin waves exceeds 
some critical value [3]. Second, the spin-wave approximation neglects the many-body 
interactions [3] between spin waves, which also become impcrtant when the spin-wave 
density is large. Third, Wortis [3] has shown that a pair of spin waves with total 
momentum near the zone edge can form a bound state with energy of order zJs. The 
formation of bound states above the crossover temperature 'f implies that the spin 
fluctuations can no longer be described as a set of weakly interacting, particle-like 
excitations. 

In the following calculation, we use the random phase approximation [4,5] (WA) 
to represent the more general class of spin-wave theories. But our conclusions apply 
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to any theory which yields spin-wave thermodynamics at low temperatures. To derive 
the crossover temperature, we compare the RPA free energy with the exact free energy 
expanded to order l/zz. The 1/z expansion was originally formulated by Horwitz 
and Callen [6], Brout [7,8], and others [9]. The discovery of several anomalies in this 
expansion prevented its widespread use. Recently, Fishman and Liu [IO] (FL) have 
established that the 1/z expansions of the order parameter and free energy are in fact 
consistent. The troubling features of the I/z expansion can now be simply explained. 
For example, the discontinuities in the l /z corrections to the free energy and entropy 
at the MF Curie temperature are required [lo-121 for the total free energy and entropy 
to be continuous at the shifted Curie temperature. The other ‘anomalies’ can also be 
explained in a straightforward fashion. 

Since the 1/z expansion was previously derived in FL, we simply sketch the method 
here. The Hamiltonian of the Beisenberg model is 

R S Fishman and G Vignale 

H = -J S i .  Sj (1) 
( i d  

where J > 0 is the exchange coupling and the spins obey the commutation relations 

cs,o,sj&91 = -%j%p-/ss7 (2) 

with h = 1. We separate the Hamiltonian into a mean-field (MF) term He,, a constant 
term H,, and a fluctuation term H,: 

H = He*+ H, + H ,  

He, = -zJMo z S i z  
i 

(3) 

(4) 

where the MF order parameter Mo(r*) = is evaluated by neglecting H,. Like 
every MF expectation value, MO is a function only of the dimensionless temperature 
r* = T / z J  and of the spin s. The fluctuation term Hz couples the local spin fluctua- 
tions on neighbouring lattice sites. As the number of nearest neighbours z increases, 
the mean-field experienced by each spin becomes stronger and the coupling of fluctua- 
tions becomes weaker. So the coupling of fluctuations in H, produces 112 corrections 
to MF theory. 

Because H, is constant and 8, commutes with He,, the general expressions for 
the order parameter M = (SlZ) and partition function Z are 

1 (8) 

= n(e-BHet,e-PHa 1 (9) 

M = - ~ ( e - B H e ~ : e - B H a ~ , ,  1 
Z 

with the free energy F defined by 
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The l/z expansion is generated by expanding equations (8) and ( 9 )  in powers of 
the fluctuation energy Ha. As a function of the dimensionless temperature P,  each 
term in this expansion can he characterized by its order in 1 / z .  Formally, the order 
parameter and free energy may be expanded as 

1 1 
M = M,(T*) + -M1(T*) + - p , ( T * ) .  . . z 

Both Mi and F J N z  J are functions only of T* and s. Of course, the MF free energy 
is just F,. 

The first-order corrections MI and Fl were evaluated in FL. The divergence of 
MI to -cu at the MF Curie temperature = s(s + 1) /3  is not an ‘anomaly’ of the 
expansion. Rather, it signals the suppression of the Curie temperature from the MF 
value [lo]. The first-order free energy Fl is represented by the one-loop diagram on 
the bottom of figure 1 .  Each solid line in this diagram represents a factor of JRi, 
which couples neighbouring lattice sites. Notice that this diagram may be positioned 
between any of the N z / 2  neighbouring sites in the lattice. So its contribution is 
proportional to N z J a  = N ( z J ) * / z  or, in dimensionless units, to 1 / z .  The first-order 
fluctuation specific heat, 

is plotted in the full curve of figure 2 for s = 3/2 and z = 6. As reported in FL, C , / N r  
has a peak below Tc at the temperature ~3 0.2zJs .  The physical significance of this 
peak will be discussed shortly. 

Figure 1. Diagrammatic repreentations of F ~ I N z J  and A F R p A I N d .  F11Nz.l is 
contained in the RPA ring expansion. 
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Figure 2. The fluctuation specific heat wsus X*/s(s + 1) for a = 3/2 and z = 6. 
Plotted arc CI/NZ (full), (CI f C * / z ) / N z  (broken), and the told RPA fluctuation 
specific heal (ebb). 

It is considerably more difXcult to evaluate the l /zz  corrections to the free energy. 
The infinitely many contributions to Fz on a d-dimensional hypercubic lattice are 
presented in figure 1. Most of these diagrams involve the many-body interactions 
between tbree or more fluctuations at the same site. For example, each 'dumb-bell' 
diagram F,(">') contains two sites where three spin fluctuations interact at once. 
Fortunately, the infinite sum over dumb-bells can be performed exactly [12]. The 
'anomalous' behavior of F2 at the MF Curie temperature is required for the continuity 
of the total free energy and entropy at T,. Adding the second-order specific heat 
C2/Nz2 to Cl/Nz yields the broken curve in figure 2, where the quantumpeak appears 
at a slightly lower temperature. 

The RPA free energy FRPA can also be expanded in powers of l/z: 

Diagramatically, the l/r" term is represented by a ring of 2n lines and the fluctuation 
free energy AFWA = FWA - Fo is represented by the ring summation in figure 1. 
Only two spin fluctuations interact at each vertex of a ring diagram So unlike the 
exact free energy, the RPA free energy neglects the many-body interactions between the 
spins. The summation over rings produces the usual WA specific heat, which in three 
dimensions behaves like T3I2 near T = 0 and diverges at the MF Curie temperature. 
The ring summation also yields the RPA spin-wave frequencies 

1 r(q)  = - 
6 

z 

where 6 are the z nearest-neighbour vectors. 
The superscript RPA is omitted from the first two terms in equation (14) because 

they agree with the exact results of FL. So the first-order RPA free energy agrees with 
Fl and the first-order RPA specific heat also peaks at P. This peak survives the ring 
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summation to appear in the total RPA fluctuation specific heat, plotted in the chain 
curve of figure 2. Since the longitudinal and transverse spin components do not couple 
in the ring summation of figure 1, the RPA free energy can be conveniently divided 
into longitudinal and transverse pieces. The peak in the fluctuation specific heat is 
produced by the transverse RPA free energy, F F A ,  which contains the contributions of 
the spin-wave modes. As the temperature exceeds the maximum spin-wave frequency 
2zJs,  spin waves with all possible momenta contribute to F F A .  In this equipartition 
regime, F F A  becomes a linear function of temperature and the transverse specific 
heat decreases to zero, producing the peak at p [13]. 

To second-order in 1/z, however, the RPA free energy differs from the exact free 
energy. The square diagram which represents FZmA/NzJ is only one of the infinitely 
many diagrams which contribute to F , / N r J .  Clearly, the exact free energy is far more 
complex than the RPA free energy. But despite their very different structures, the two 
free energies obey the same limit at low temperatures: 

where y = Because the diagrams containing three-body interactions are pro- 
portional to yz, they do not affect this low-temperature result. To linear order in y, 
the four-body interaction in F,(S) can be treated as the product of two-body interac- 
tions. So to order y, only the two-body interactions are significant and Fz agrees with 

The difference between FmA and Fz is plotted in figure 3 for three values of 
the spin. Notice that the free energies become significantly different only above the 
quantum peaks, which are indicated by arrows. So for T < p, the infinite number 
of diagrams in F, can be replaced by the single square diagram of FFPA. More 
generally, we believe that below p every free energy correction Fngz can be replaced 
by the corresponding ring contribution FnT.f. Therefore, below p the ring summation 
is justified and the spin-wave description is appropriate. Above p ,  however, the many- 
body interactions become important and the spin-wave approximation breaks down. 

F p .  

Figure 3. The difference (FFp* - &)/NzJ  versus T*/s(a+ 1) fors = 112 (fa), 312 
(broken), and 512 (chain). The m o w s  denote the positions of the quantum peaks. 
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The proximity of the non-linear crossover to the quantum peak can be qualitatively 
understood as follows. Above T ,  the thermodynamics is controlled by the contribution 
of spin waves with large momenta. As shown by Wortis [3], the interaction between 
two spin waves becomes stronger as their total momentum increases. So above the 
spin-wave interactions must be highly non-hear. Since the spin-wave approximation 
cannot describe such highly non-linear interactions, it fails above the quantum peak. 

Because all the many-body interactions contribute to the free energy above T ,  
the FLPA cannot be repaired by simply adding a finite set of non-linear terms to the 
spin-wave Hamiltonian. For example, suppose that the three- and four-body terms 
are added to the spin-wave Hamiltonian. Even if the spin-wave free energy could then 
be evaluated ezdctly, it would still exclude the five- and six-body interactions which 
contribute to F3 above T.  So despite a very gruelling calculation, the accuracy of that 
spin-wave free energy would only be of order l/zz. Clearly, the easiest way to classify 
and examine the non-linear interactions above p is through a l/z expansion. 

Since the quantum peak at ? appears in both the l/z and RPA results for the 
fluctuation specific heat, this peak marks the cTossover between the linear and non- 
linear regimes. After the large MF contribution is added to the fluctuation specific heat, 
the total specific heat develops a broad shoulder at the crossover temperature. Our 
theory predicts the shoulder to appear near T,/(s + 1). Specific heat measurements 
on terbium [14] and gadolinium [15] have observed shoulders at temperatures very 
close to this prediction. 

This paper disagrees with earlier workers [6-81 who supposed that every ring dia- 
gram wasoforder 1/z. If that were true, the l/z free energy would agree with the RPA 
fluctuation free energy. But for a d-dimensional hypercubic lattice, the free energy of 
the nth order ring diagram is proportional to 

not to 1/z. So only the lowest-order ring diagram in figure 1 contributes to the first- 
order free energy. This example demonstrates the difference between the 1/z expansion 
and a loop expansion [16] such as the FLPA, which contains terms of all orders in l/z. 

More recently, Gros and Johnson [17] have derived the RPA from an exact expan- 
sion of the self energy to first order in 1/z. Since the self energy enters the denominator 
of the spin-wave propagator, the RPA free energy is rigorous only up to order 1/z, in 
agreement with this paper. In future work, we will use an expansion of the self energy 
to study the dynamics of the non-linear modes above p. 
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